k-Gorenstein Modules
نویسنده
چکیده
Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then characterize it in terms of the U -resolution dimension of some special injective modules and the property of the functors Exti(Exti(−, U), U) preserving monomorphisms, which develops a classical result of Auslander. As an application, we study the properties of dual modules relative to Gorenstein bimodules. In addition, we give some properties of ΛUΓ with finite left or right injective dimension.
منابع مشابه
Relative (co)homology of $F$-Gorenstein modules
We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.
متن کاملGeneralized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملGorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کامل1 0 Se p 20 04 k - Gorenstein Modules ∗ †
Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then establish the left-right symmetry of the notion of k-Gorenstein modules, which develops a classical result of Auslander. As an application, we study the properties of dual modules relative to Gorenstein bimodules. ...
متن کامل9 S ep 2 00 4 Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کاملWakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کامل